Porcentajes por aquí y por allá

Porcentajes por aquí y por allá

Aprendizaje esperado: resoluelve mediante diferentes procedimientos, de problemas que impliquen la noción de porcentaje: aplicación de porcentajes, determinación, en casos sencillos del porcentaje que representa una cantidad (10%, 20%, 50%, 75%) aplicación de porcentajes mayores que 100%.

Énfasis: calcular el monto de o de los porcentajes aplicados, dada una cantidad que incluye ese o esos porcentajes; calcular una cantidad cuando se aplican dos porcentajes; significado de los porcentajes mayores a 100%

¿Qué vamos a aprender?

En esta sesión podrás emplear diferentes procedimientos para solucionar problemas que impliquen el uso de la noción de porcentaje, la determinación, en casos sencillos, del porcentaje que representa una determinada cantidad (10%, 20%, 50%, 75%) y la aplicación de porcentajes mayores que 100%

¿Qué hacemos?

En la sesión de hoy reflexionarás sobre la conveniencia o no de comprar algunos productos del hogar, ropa, comida y algunas otras cosas más, las cuales se ofrecen con descuento.

En las actividades de esta sesión revisarás el aprender a comprar, sabiendo cuándo y en dónde adquirir lo que necesitas o necesita tu familia, cuidando el dinero familiar.

Recuerda que siempre debes fijarte en lo que las tiendas ofrecen como ofertas, pues a veces es difícil saber a primera vista qué tan buenos son los descuentos. La publicidad suele ser confusa y en ocasiones se presentan supuestas oportunidades que una vez revisadas resulta que en realidad no son buenas ofertas.

Es importante saber comprar para no acabar adquiriendo cosas que no se necesitan, sólo porque se anuncien con descuento.

Para esto, usarás una herramienta matemática muy poderosa los porcentajes.

Parte del siguiente caso donde una persona recibió un volante de un supermercado y al leerlo encontró algunos artículos del hogar que se ofrecían con descuento, así que fue encerrando cada uno en un círculo.

Con esta selección elaboró una lista de los productos, de los precios y de los descuentos que tenían; luego consultó en otros dos supermercados los precios y los descuentos que ofrecían por los mismos productos, para tener un comparativo y ver cuál tienda tenía el mejor precio.

Encontró que los tres supermercados ofrecían descuentos.

Observa la tabla que elaboró y encuentra en qué tienda conviene más adquirir determinado producto. Sólo necesitas concentrarte y hacer algunas operaciones para encontrar el mejor precio y el lugar donde es más barato.

Aquí está la lista de los productos y las tiendas que comparó.

Tienda de Autoservicio “El Abarrotero Loco”
10%
“Todo para tu hogar”
20%
“La Garra del León”
35%
Televisor de 32´ $ 8,600.00 $ 9,100.00 $ 11,200.00
Licuadora 4 velocidades. $ 720.00 $ 550.00 $ 680.00
Cafetera eléctrica de 12 tazas. $ 800.00 $ 690.00 $ 920.00
Chamarra para niño T-12. $ 475.00 $ 490.00 $ 500.00
Pantalón de mezclilla T-16. $ 230.00 $ 350.00 $ 299.00
Jitomate bola 1 kg $ 18.50 $ 19.90 $ 22.50
Carne molida de res 1 kg. $ 160.00 $ 175.00 $ 210.00
Manzana 1 kg. $ 35.80 $ 45.00 $ 52.90

¿Dónde conviene más comprar la cafetera eléctrica?

Debes recordar que los porcentajes se pueden escribir en números decimales. Eso facilitará hacer las operaciones. Comienza calculando cuánto sale en el “Abarrotero Loco”.

Primero debo saber cuánto es de descuento, así que, calculo el 10% de 800, como ya lo has visto antes, así que en la primera opción cuesta $800 y tiene 10% de descuento, entonces…

800 x 0.10 = 80

Luego ese descuento lo debes restar al precio original y listo.

800 80 = 720

El precio de la cafetera eléctrica en “El Abarrotero Loco”, es de $720

¿Cuánto sale en “Todo para tu hogar”?

En esa tienda cuesta $690 y hacen un 20% de descuento así que primero calcula el descuento.

690 x 0.20 = 138

Y después el descuento debes restarlo al precio original.

690 138 = 552

Así que en “Todo para tu hogar” esa cafetera la dan en $552

Calcula el precio que tendrías que pagar en “La Garra del León”.

En esa tienda la venden a $920, pero tiene un descuento del 35%

920 x 0.35 = 322

Eso quiere decir que, al precio original le debes descontar $322, así que:

920 322 = 598

El precio de la cafetera en esta tienda es de $598

Entonces el mejor precio por la cafetera es el del almacén “Todo para tu hogar”.

Seguramente pensaste en que saldría más barata en donde ofrecían un mayor descuento, pero ahora puedes ver que debes hacer cuentas antes de decidir.

Precisamente esto es algo que vas a aprender en esta clase. No por tener un mayor descuento, quiere decir que resulte más barato un artículo.

Ahora, ¿En qué almacén dan más barata la chamarra?

Para saberlo tienes que hacer de nuevo todos los cálculos para los tres almacenes.

Para que no resulten tan tardados y tediosos todos los cálculos, puedes seguir un camino más corto. ¿Quieren conocerlo?

Empieza calculando el precio de la chamarra en “El abarrotero loco”. Ahí vale $475 y tiene un descuento del 10% en vez de calcular primero el 10% y después restarlo al precio original, analiza cómo estás haciendo los cálculos. ¿Estás de acuerdo que el precio original representa el 100%? bueno, pues como ofrecen un 10% de descuento, puedes restar al 100% el 10% y eso te da 90% esto quiere decir que sólo pagas el 90% del costo, ¿Verdad? Pues bien, vas a ver qué pasa si multiplicas el precio original por 90%

475 x 0.90 = 427.50

Entonces, el precio final con el descuento incluido de la clamarra es de 427 pesos con 50 centavos.

Realiza la comprobación siguiendo la forma anterior. Con ese procedimiento los cálculos serían los siguientes:

475 x 0.10 = 47.50

475 47.50 = 427.50

Como podrás notar se encontró el kismo resultaso pero haciendo más operaciones.

Sige practicando con esta nueva forma se hacer el cálculo directo del precio, incluyendo el descuento. Obten el precio de la chamarra en los otros dos almacenes de esta forma directa.

En “Todo para el hogar” la chamarra cuesta $490 y tiene un descuento del 20%. De modo que su precio con todo y descuento representa el 80%. Así que:

490 x 0.80 = 392

Su precio es entonces de $392

Ahora con el precio de la chamarra en “La garra del león”.

500 x 0.65 = 325

El precio más bajo es el de 325 pesos.

En esta ocasión coincidió que con el descuento mayor se obtuvo el precio más bajo. Eso reafirma que la mejor forma de saber cuál es el mejor precio, es recurriendo a las Matemáticas y no dejándonos llevar por lo que se nos ofrece, sin analizar cuidadosamente las opciones.

Ahora, ¿En cuál de los tres almacenes es más barato el kilogramo de carne molida?

Calcula el precio final que da “El abarrotero loco”, utilizando el atajo que aprendiste.

160 x 0.90 = 144

Aquí vale $144 pesos.

Ahora ve a cómo dan la carne en “Todo para su hogar”.

175 x 0.80 = 140

Entonces este almacén la da a $140 pesos.

Por último, calcula el precio final de la carne en “La garra del león”.

210 x 0.65 = 136.50

Su precio ahí es de $136.50 por lo tanto, aquí es donde más conviene comprarla.

Ahora, ya que estas viendo la utilidad de los porcentajes, aprovecha para ver otro aspecto de ellos, ¿Qué significa tener un porcentaje mayor al 100%?

Seguramente siempre habías calculado porcentajes menores que 100. Obsérvalo con ayuda de un gráfico.

Observa la imagen. Si el primer cuadrado representa el 100% ¿Qué porcentaje representan los dos cuadrados que están en la segunda imagen?

En la primera imagen el cuadro representa el 100, entonces en la segunda imagen hay dos cuadros, uno completo y el otro cuadro en donde la zona sombreada es la cuarta parte, entonces, como una cuarta parte es igual al 25% entonces los dos cuadros representan 100 + 25 representan el 125%.

Ahora realiza un ejercicio semejante. Haz un diagrama en donde esté representado el porcentaje de 375%. Te puede ayudar si consideras que un cuadrado representa el 100%

Si un cuadrado representa el 100%, entonces al sumar otros dos tendrías:

100 + 100 + 100 = 300

Sólo falta ver cómo se podría representar el otro 75%. Si dividimos otro cuadrado en cuatro, entonces tenemos que cada cuadrito menor representa un cuarto o si se expresa en porcentajes, sería 25%. Así que tres de esas partes representan el 75% faltante.

Entonces la representación gráfica de 375%, quedaría así.

Una vez que has ilustrado de manera gráfica lo que significa tener más del 100%, observa cómo podrías obtenerlo numéricamente. Resuelve el siguiente problema. “Si un animal al nacer tiene un peso de 450 gramos y al cabo de unos meses alcanza el 250% de su peso inicial, ¿Cuánto pesa actualmente?”

Si 450 representa el 100% entonces el 250% es igual a dos veces y media esa cantidad. Así que para obtener el peso que equivale a 250% debes sumar dos veces esa cantidad, más su mitad, así:

450 + 450 + 225 = 1 125

Entonces el animal pesará 1,125 gramos.

Ahora resuelve un reto, o lo que de manera coloquial se conoce como un “torito”. Si 500 representa el 100% ¿Qué número representará al 500%?

Si el 100% es 500, el 500% es 5 veces más que 100 entonces debes sumar 5 veces 500, o para hacerlo más rápido, pues a 500 lo multiplicas por 5

500 x 5 = 2 500

Ese es el resultado: 2 500 es el 500% de 500

Ahí va otro desafío:

Si 200 es el 100% ¿Qué cantidad representa el 125%?

200 representa al 100%, entonces necesitamos un 25% más para tener el 125% que queremos conocer. El 25% es una cuarta parte y se expresa en decimales como 0.25

Por lo que si multiplicas:

200 + 0.25 = 50

Entonces sumas:

200 + 50 = 250

Ahí está 250 es el 125% de 200

Se aplica el porcentaje en los problemas anteriores, usando diferentes estrategias, resuelve el problema siguiente:

“Ayer llegó el estado de cuenta de una tarjeta de crédito y solicitan el pago de la cantidad gastada, junto con los intereses generados. En este caso el banco “Mi Tesoro” cobra el 23% mensual. Las compras fueron las siguientes: la primera fue de $160 pesos, la segunda de $210, y en la última de $430 pesos, además $ 560 de gasolina, un sartén de $158 y un vaso de licuadora que costó $ 300.00”

¿Cuál fue el importe de las compras? Hay que sumar todos los gastos.

160 + 210 + 430 + 560 + 158 + 300 = 1 818

El importe de las compras fue por mil ochocientos dieciocho pesos.

Ahora, calcula exactamente cuánto debe pagarse al banco, teniendo en cuenta que cobra el 23% por concepto de intereses de todo lo que se gastó.

Aquí lo que hay que hacer es sacar el 23% de 1 818 y sumarlo a la cantidad que se gastó. Así tendrás el total de lo que se debe pagar.

Usa una manera sencilla y rápida de calcular gracias a lo que aprendiste en esta sesión.

Si todo lo que se gastó es el 100% y además se le van a cargar el 23% entonces en realidad lo que vas a calcular es el 123% ¡Así de sencillo! Multiplica:

1 818 x 123 = 2 236.14

¿Observas cómo se desarrollan tus habilidades matemáticas?

El reto de hoy:

Has concluido con esta sesión de repaso. Ahora tu reto consiste en solucionar unos “toritos”. Puedes copiarlos en tu cuaderno para analizarlos con calma y responderlos.

“Julio antes podía correr una hora todas las mañanas; ahora ya puede correr hora y media, ¿Qué porcentaje representa su rendimiento actual en comparación con el anterior?” Las opciones son las siguientes:

“Elena hacía ejercicio dos horas al día; ahora se ejercita dos horas y media. ¿En qué porcentaje aumentó su actividad diaria?” Las opciones son las siguientes:

Comparte tus resultados con alguien cercano y explícale lo que hiciste para obtener esos datos.

Si te es posible, consulta otros libros o materiales para saber más sobre el tema.

¡Buen trabajo!

Gracias por tu esfuerzo.

Para saber más:

Lecturas

https://www.conaliteg.sep.gob.mx/

Descarga la ficha dando clic aquí